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ABSTRACT:  Stratification is generally used to improve the precision of aerial surveys.  In Minnesota, 
moose (Alces alces) survey strata have been constructed using expert opinion informed by moose density 
from previous surveys (if available), recent disturbance, and cover-type information.  Stratum-specific 
distributions of observed moose from plots surveyed during 2005-2010 overlapped, suggesting some 
improvement in precision might be accomplished by using a different stratification scheme. Therefore, 
we explored the feasibility of using remote-sensing data to define strata.  Stratum boundaries were 
formed using a 2-step process: 1) we fit parametric and non-parametric regression models using land-
cover data as predictors of observed moose numbers; 2) we formed strata by applying classical rules 
for determining stratum boundaries to the model-based predictions.  Although land-cover data and 
moose numbers were correlated, we were unable to improve upon the current stratification scheme 
based on expert opinion.
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Aerial surveys are used to estimate moose 
(Alces alces) numbers and population param-
eters throughout much of North America, and 
in northeastern Minnesota they have been 
conducted annually since 1959 (Karns 1982).  
The Minnesota survey is based on a stratified 
random plot design, in which aerial units 
having similar expected moose density are 
grouped into strata to minimize the sampling 
variance of the population estimate.  Variance 
among stratum-specific abundance estimates 
does not contribute to the sampling variance 
of the total population estimate, and thus, even 
poor stratification will usually improve preci-
sion compared to simple random sampling 
(Cochran 1977, Gasaway et al. 1986).

Gasaway et al. (1986) suggested using 
counts from pre-survey flights to form strata, 
but logistical and financial considerations have 
made pre-survey flights infeasible in Minne-
sota.  Instead, moose survey strata have been 

constructed using expert opinion informed 
by moose density from previous surveys 
(when available), recent disturbance (e.g., 
logging, insect damage, blowdown, fire), and 
cover-type information; plots are periodically 
re-stratified to incorporate real or perceived 
changes in these factors.  Despite best efforts, 
we have occasionally observed few moose in 
high density stratum plots or many moose in 
low or medium density stratum plots.  It has 
generally been assumed that more formal nu-
merical methods could be employed that would 
integrate cover-type data to better stratify the 
survey plots (see Moen et al. 2011).  Presum-
ably, better stratification would increase the 
precision of population estimates and increase 
the power to detect population trends (Lenarz 
et al. 2010, Lenarz 2011).  

Moose abundance in Minnesota is cur-
rently estimated using a sightability model 
estimator, which inflates raw counts by 
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plot-level sampling probabilities as well as 
estimates of the probability of detecting each 
observed moose group (Steinhorst and Samuel 
1989, Giudice et al. 2012).  Three random 
processes create uncertainty in the estimated 
abundance: 1) the random sampling of survey 
plots; 2) random detection (and failed detec-
tion) of independent groups within surveyed 
plots; 3) uncertainty associated with param-
eters used to model detection probabilities.  
The coefficient of variation from past survey 
estimates (years 2004-2010) has ranged from 
14-23% (mean = 17%).  On average, 45, 16, 
and 39% of the variance has been attributed 
to sampling, detection, and model estimation 
processes, respectively.  Our primary objective 
is to report on our efforts to develop alterna-
tive stratification schemes using cover-type 
composition data which has the potential to 
reduce the sampling variance component. 

METHODS
Study Area

The aerial sampling frame used for the sur-
vey encompasses 15,056 km2 of northeastern 
Minnesota (47°40’N, 91º25’W; Fig. 1).  The 
forests were transitional between Canadian 
boreal forests and northern hardwood forests 
further south and includes all of the Boundary 
Waters Canoe Area Wilderness (BWCAW, 
Pastor and Mladenoff 1992). Wetlands includ-
ing small to medium sized lakes, bogs, marsh, 
and small streams are interspersed on a low 
plateau that rises abruptly from Lake Superior 
to a crest approximately 700 m above sea level 
(Heinselman 1996).  A northeast-southwest 
continental divide runs down the middle of 
the plateau with water flowing southeast into 
Lake Superior or northwest into the Hudsonian 
watershed.  

The aerial sampling frame was a mosaic of 
conifer communities classified as the Northern 
Superior Upland section (Minnesota Depart-
ment of Natural Resources [MNDNR] 2007). 
The landscape was characterized by northern 
white cedar (Thuja occidentalis), black spruce 

(Picea mariana), and tamarack (Larix la-
ricina) on the lowlands, and balsam fir (Abies 
balsamea), white spruce (P. glauca), and jack 
(Pinus banksiana), white (P. strobus), and red 
pine (P. resinosa) on the uplands.  Deciduous 
species, primarily quaking aspen (Populus 
tremuloides) and white birch (Betula papy-
rifera), occurred on the uplands in hardwood 
stands or were intermixed with conifers.

Although logging is not allowed in the 
BWCAW portion of the aerial sampling frame 
(Fig. 1), extensive disturbance occurred in 
1999. A severe windstorm broke off or up-
rooted millions of trees in an area of roughly 
1,900 km2 (USDA Forest Service 2002).  Large 
wildfires disturbed an additional 430 km2 in 
2006 and 2007 (Fites et al. 2007).  Outside the 
BWCAW, extensive commercial logging has 
occurred on state, federal, and private lands.	

Survey Data and Stratification Variables
We limited our analysis to surveys after 

2005 when we made 3 major changes to 
the protocol.  We switched from fixed-wing 
aircraft to helicopters, we shifted from us-
ing irregularly shaped survey plots to a grid 
of rectangular plots (4.3 x 8.0 km), and we 
changed from using double sampling to adjust 
for sightability bias (Gasaway et al. 1986) to 
the development and use of a sightability model 
(Anderson and Lindsey 1996, Quayle et al. 
2001, Giudice et al. 2012).  Prior to the 2005 
and 2010 surveys, we re-stratified all survey 
plots.  Low density plots were expected to 
contain ≤7 moose (0.2 moose/km2), medium 
density plots 8-20 moose (0.2-0.6 moose/
km2), and high density plots ≥21 moose (0.6 
moose/km2).

As described in Lenarz et al. (2011), we 
modified a land use and land cover (LULC) 
raster layer provided by MNDNR (1998) for 
potential use in determining strata.   The base 
source layer was derived from LANDSAT 
30-meter thematic satellite imagery dated 
summers 1991-1996 and then divided into 
16 classes based on imagery dated 1995 and 
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1996.  Forest disturbance data (P. T. Wolter, 
University of Wisconsin, Green Bay, unpub-
lished data) were added to reflect areas of 
regenerating deciduous and coniferous forest 
following logging (1975-2000), as well as 
areas recovering from the 1999 windstorm 
event. We combined blowdown, hardwood 
regeneration, and conifer-regeneration clas-
sifications from Wolter’s data with the cover 
type listed as “cutover” from the LULC layer 
into a single cover type to reflect disturbed 
habitats. Cutover represented areas where 
commercial timber was removed between 
1980 and 1995. We also used 6 other cover 
types from the LULC layer: mixed, conifer, 
bog, deciduous, marsh, and water.  In Arc-
GIS 9.2 (Environmental Systems Research 
Institute, Redlands, CA, USA) we clipped 
the vegetative cover layer for each survey 

plot and computed the area (m2) of each cover 
type within each plot. Finally, we calculated 
the proportion of the 7 cover types that made 
up each survey plot.

Alternative Stratification Schemes
Several classical rules have been devel-

oped for forming stratum boundaries using a 
single stratification variable, x, assumed to be 
correlated with the survey response variable, 
y.  In particular, the cumulative square root 
frequency of sampling units (“cum√f”)  rule 
developed by Dalenius and Hodges (1959) is 
widely applied in practice (see Cochran 1977: 
127-131 for a description and exemplification 
of the general approach).   We illustrate the 
rule using x = the proportion of each sample 
plot that is classified as “disturbed” habitat.  
To apply this rule, one first forms a frequency 

Fig.1.  Sampling frame used for the aerial moose survey in northeastern Minnesota, USA, 2005-2011.  
Stratification indicated by shades of gray.  White grid blocks (urban, iron mines) were expected to 
contain 0 moose and were not included in the survey.
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table containing counts of the number of 
observations falling into (usually, equally 
sized) class intervals; in our example, we 
considered 30 intervals (Table 1).  Next, one 
constructs a column holding the square root 
of the frequency count, √f (column 3 of Table 
1), and a column holding the cumulative sum 
of √f, cum√f  (column 4 of Table 1).  Stratum 
boundaries are chosen to give roughly equally 
sized intervals on the cum√f scale.  For ex-
ample, to form 3 strata we would divide the 
total cum√f = 75.15 by 3 ≈ 25, resulting in 
the following 3 strata definitions:  cum√f ≤ 25 
(stratum 1), 25< cum√f  ≤ 50 (stratum 2), and 
cum√f   > 50 (stratum 3).  Values of disturb = 
0.1 and 0.201 create stratum boundaries that 
best approximate this goal. 

Fabrizi and Trivisano (2007) suggested a 
method for determining stratum boundaries 
when multiple stratification variables are avail-
able along with prior-survey response data.  To 
apply their approach, stratum boundaries are 
formed using a 2-step process: 1) a model is 
fit to prior survey data which allows predic-
tion of survey responses from the group of 
available stratification variables; 2) stratum 
boundaries are formed by applying the cum√f 
rule to these model-based predictions (rather 
than a single predictor, x).  Following this 
general approach, we evaluated alternative 
stratification schemes that incorporated land 
cover-type composition data.  We explored 2 
different predictive modeling approaches us-
ing past survey counts as the response data:  1) 
we fit a Poisson regression model with linear 
and additive effects of land-cover variables (on 
the log scale); 2) we formed predictions using 
boosted regression trees (hereafter ‘boosted 
trees’), a non-parametric method that tends to 
perform well in settings where interactions are 
prevalent or the relationship between response 
and predictor variables is highly non-linear 
(De’ath 2007, Elith et al. 2008).  Boosted trees 
were among the best-performing methods for 
forming strata across a range of simulation 
scenarios considered by Fabrizi and Trivsano 

(2007).  Boosted trees require specification of 
several tuning parameters; see Appendix I for 
model fitting details.  In addition, we recom-

Class interval1 Frequency (f)2 √f cum√f
[0,0.0164] 40 6.32 6.32

(0.0164,0.0332] 20 4.47 10.80
(0.0332,0.05] 17 4.12 14.92
(0.05,0.0668] 14 3.74 18.66

(0.0668,0.0836] 16 4.00 22.66
(0.0836,0.1] 18 4.24 26.90

(0.1,0.117] 26 5.10 32.00
(0.117,0.134] 13 3.61 35.61
(0.134,0.151] 12 3.46 39.07
(0.151,0.168] 12 3.46 42.54
(0.168,0.184] 21 4.58 47.12
(0.184,0.201] 14 3.74 50.86
(0.201,0.218] 6 2.45 53.31
(0.218,0.235] 8 2.83 56.14
(0.235,0.252] 7 2.65 58.78
(0.252,0.268] 5 2.24 61.02
(0.268,0.285] 6 2.45 63.47
(0.285,0.302] 5 2.24 65.71
(0.302,0.319] 6 2.45 68.16
(0.319,0.336] 1 1.00 69.16
(0.336,0.352] 1 1.00 70.16
(0.352,0.369] 1 1.00 71.16
(0.369,0.386] 1 1.00 72.16
(0.386,0.403] 1 1.00 73.16
(0.403,0.42] 1 1.00 74.16
(0.42,0.436] 0 0.00 74.16

(0.436,0.453] 0 0.00 74.16
(0.453,0.47] 0 0.00 74.16
(0.47,0.487] 0 0.00 74.16

(0.487,0.504] 1 1.00 75.16

Table 1.  Application of the cum√f rule with “dis-
turb” (percent of the sample plot classified as 
disturbed habitat) as the stratification variable. 

1Class interval for the “disturb” land-cover variable 
(describing the amount of disturbed habitat in a 
sample plot).  The (x1, x2] format indicates the 
interval includes all values > x1 and ≤ x2.  

2Count of the number of observations falling within 
the class interval.
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mend De’ath (2007) and Elith et al. (2008) 
for an introduction to boosted trees.   

We evaluated the alternative stratification 
schemes by constructing side-by-side box plots 
illustrating stratum-specific distributions of 
observed moose.  In addition, we compared 
the expected precision of a stratified random 
sample of size 40, with (stratum-specific) 
sampling rates determined using optimal allo-
cation formulas (Cochran 1977).  Without any 
adjustment, these comparisons would result 
in optimistic performance measures for the 
model-based stratification schemes since the 
same data would be used for model fitting and 
evaluation.  By contrast, strata based on expert 
opinion were formed prior to data collection 
(although past survey data were occasionally 
used to change stratum assignments, these 
temporal changes were updated in our survey 
data only for future, and not prior years).  We 
used a 10-fold cross-validation procedure 
to allow for a more fair comparison of the 
stratification schemes.  Specifically, we split 
the data into 10 groups and fit both models 
(Poisson regression, boosted tree) 10 times, 
leaving out 1/10 of the data on each occasion.  
We then used the fitted models to predict moose 
numbers for the observations not used in the 
model-fitting process.  These “out-of-sample” 
predictions were combined into a new dataset 
and the cum√f  rule was applied to form strata.  
The out-of-sample predictions were also used 
to allocate sampling effort among strata, but 
the expected precision was calculated using 
the (true) observed moose data.  

We used functions in Program R (R De-
velopment Core Team 2010) for model fitting 
and for testing stratification schemes. We used 
the ‘glm’ function to fit the Poisson regression 
models.  We used functions in the dismo and 
gbm packages (Ridgeway 2010, Hijmans et 
al. 2011) to fit the boosted tree model.  Lastly, 
we used functions in the stratification pack-
age (Baillargeon and Rivest 2011) to apply 
the cum√f  rule to model-based predictions, 
specifying that we desired 3 strata.  

Results
Between 2005 and 2011, 237 plots were 

surveyed as part of the annual moose survey 
in northeastern Minnesota.  Cover types were 
ubiquitous across the survey plots examined; 
86% of the surveyed plots contained all 7 
cover types and the remaining 14% had 6 
cover types.  Disturbed, conifer, marsh, mixed, 
and water were found in 100% of the survey 
plots examined; bog was found in 99% and 
deciduous 88% of the plots.

Both the Poisson regression model and 
the boosted tree model suggested the 7 
land-cover predictors were correlated with 
observed moose numbers.  Regression coef-
ficients in the Poisson model were all positive 
and statistically significant at the P = 0.01 
level, suggesting moose were more likely to 
be found in plots that contain these 7 cover 
types, relative to those that have more “shrub” 
or “other” (the only 2 land-use categories not 
included in the model).  

Functional relationships are more difficult 
to infer with boosted tree models, although 
various tools and metrics have been devel-
oped to help interpret model fit and predictor 
importance (again, refer to De’ath 2007 and 
Elith et al. 2008 for useful reviews).  In par-
ticular, partial dependence plots can be used 
to graphically explore how predictions vary 
with each covariate (Friedman 2001).  The 
partial dependence plot for covariate Xi is 
formed by averaging predictions across all 
observations while holding Xi constant.  These 
plots indicate fairly linear responses (up to or 
down to a threshold) in relation to the relative 
abundance of bog, conifer, mixed, and dis-
turbed cover types (Fig. 2); predicted moose 
numbers decreased with increases in % bog 
and increased with % conifer, % mixed, and 
% disturbed.  Responses to the other covari-
ates were non-linear, with modal responses 
observed for % marsh and % water.  Indices 
of predictor importance (given in the x-axis 
labels in Fig. 2) were large for all predictors, 
but suggested that % bog was the most infor-
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mative predictor.
Despite a few outliers, side-by-side box 

plots of the distribution of observed moose 
in each stratum indicated that the current 
expert opinion process has been effective 
at discriminating among sample plots (Fig. 
3a).  The boosted tree model resulted in a 
better stratification scheme than the Poisson 
regression model (Fig. 3d, e versus Fig. 3b, c).  
Further, when the same data were used to fit 
and evaluate the model, the boosted tree ap-
proach resulted in a smaller expected SE than 
the current stratification scheme (264 versus 
289; Fig. 3a, d).  This evaluation, however, 
assumes that residual error (i.e., differences 
between current survey data and predictions 
from models fit to these same data) will provide 
an adequate approximation to prediction error 
in future surveys.  This assumption might be 
reasonable if no new plots will be sampled in 
future years and moose counts are relatively 
constant over time (within a plot).  We exam-
ined moose counts of 52 sample units that were 
surveyed multiple times, and although counts 

for some plots were relatively constant, others 
exhibited a high degree of variability (Fig. 4).  
Thus, the cross-validation approach, which 
approximates future survey prediction error by 
comparing model predictions to survey data 
not used in the model fitting process, should 
provide a more accurate evaluation of future 
performance.  The use of out-of-sample pre-
dictions (from cross-validation) degraded the 
performance of both model-based stratification 
schemes (compare Fig. 3c, e to Fig. 3b, d), and 
the expected SE for the boosted regression tree 
approach (350) was no longer smaller than 
the corresponding SE for the current expert 
opinion based system (289).  Thus, we con-
clude that the boosted tree approach may be 
competitive with (but not a clear improvement 
over) the current stratification scheme.

Discussion
The precision of population estimates ob-

tained from a stratified random survey will be 
influenced by several survey design choices, 
including the number of strata, choice of strati-
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Fig. 2.  Partial dependency plots depicting marginal predictor-response relationships from the boosted 
tree model.  The partial dependence plot for covariate Xi is formed by averaging predictions across 
all observations while holding Xi constant.  Tick marks along the x-axis depict the distribution of 
observed data.  Percentages incorporated in the x-axis labels give predictor importance measures.
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fication variables and stratum 
boundaries, and sample al-
location among strata.  We 
focused here on the choice 
of stratification variables and 
stratum boundaries, assuming 
3 strata were desired and that 
optimal sampling formulas 
would be used to allocate 
sampling effort among strata.  
We followed Fabrizi and 
Trivisano’s (2007) general 
approach to strata formation, 
but were unable to demon-
strate a clear improvement 
over the current stratification 
scheme.  This (negative) result 
is likely due, in part, to the 
effectiveness of the current 
stratification scheme based 
on expert opinion (Fig. 3a), 
but may also reflect the dif-
ficulty of predicting moose 
numbers from coarse-level 
land-cover layers developed 
from remote sensing data that 
were acquired several years 
prior to the survey.  None-
theless, the 2-step stratifica-
tion approach of Fabrizi and 
Trivisano (2007) may prove 
useful in other applications.  
The approach is transparent, 
repeatable, and easy to apply 
in practice. 

Although the current 
stratification scheme for 
Minnesota’s aerial moose survey is deter-
mined by expert opinion, land cover data are 
considered during this process (albeit more 
qualitatively).  Past survey data and other 
qualitative information also play a role, and 
these additional information sources can be 
difficult to incorporate more formally into a 
quantitative approach (e.g., using past data 
as a predictor would result in much missing 

data).  Lastly, we note that current stratum 
assignments exhibit a high degree of spatial 
correlation (Fig. 1).  In theory, one could 
incorporate spatial predictors or use models 
that allow for spatial correlation in step 1 of 
Fabrizi and Trivisano’s (2007) approach to 
forming strata, but doing so would complicate 
the analysis considerably.   
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Fig. 3. Side-by-side box plots of total moose observed in survey 
plots by stratum in northeastern Minnesota, USA, 2005-2011 
for: a) the current expert opinion based stratification scheme; b) 
the Poisson regression model based stratification scheme (using 
the same data to fit models and determine strata); c) the Poisson 
regression model based stratification scheme using out-of-sample 
predictions (from cross validation); d) boosted tree stratification 
scheme (using the same data to fit models and determine strata); 
e) boosted tree stratification scheme using out-of-sample predic-
tions (from cross validation).  The x-axis labels give the expected 
standard error associated with an estimate of the total number of 
observed moose from a sample of 40 plots allocated using optimal 
allocation formula.
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