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ABSTRACT: Temperature is an important component of climatic conditions that drive animal evolu-
tion, niche space, and life history traits. We used field-deployed temperature sensors and generalized 
linear mixed-effects models to quantify the spatiotemporal variation of ambient temperatures in three 
study areas of western Montana, in support of concurrent studies of moose ecology and population 
dynamics. We found substantial potential for thermal refuge for moose; temperature ranges observed 
simultaneously among sites within study areas averaged 7.0°C during summer and 6.1°C during win-
ter. We considered 6 site variables hypothesized to affect local temperatures (elevation, topographic 
position, aspect, land cover type, forest canopy cover, and the interaction of land cover and solar 
radiation), and all contributed to model performance. However, the direction and magnitude of effects 
varied in a cyclic fashion during the 24-hour diel cycle, and in many cases, exhibited reversed effects 
between day and night. Although spatial heterogeneity in temperature during summer was only 
slightly higher than during winter, our ability to explain such pattern was much better during summer 
(average R2 = 0.51–0.56) than during winter (average R2 = 0.09–0.23). We encourage researchers and 
managers to explore field collection and spatiotemporal modeling of temperature sensor data for 
cost-effect description of thermal environments for wildlife in local settings. 
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Temperature is an important component of 
climatic conditions that drive animal evolu-
tion, niche space, and life history traits 
(Magnuson et al. 1979). Wildlife responses 
to variation in temperature can include spa-
tial and temporal shifts in behavior (Heide-
Jørgensen et al. 2020), physiological costs 
(Haroldson et al. 1998), and effects on 
growth and demography (Frishkoff et al. 
2015, Pérez-Barbería et al. 2020). Although 
the sensitivity of ectotherms to spatial varia-
tion in microclimatic conditions is well 
established (Woods et al. 2015), evidence in 
the literature is mixed regarding the relative 
importance of thermal conditions for ungu-
lates. Ungulates in temperate regions 

commonly exhibit behavioral responses to 
temperature such as shifts in habitat selec-
tion towards areas of thermal cover to miti-
gate warm conditions (Bowyer and Kie 
2009, DelGiudice et al. 2013, Wiemers et al. 
2014). These findings emphasize thermal 
cover as a component of ungulate habitat, 
and habitat management practices for spe-
cies such as elk (Cervus canadensis) com-
monly include thermal cover prescriptions 
(Smith and Long 1987). However, Cook 
et  al. (1998) argued the positive energetic 
benefits of thermal cover are outweighed by 
negative reduction of forage in such envi-
ronments when managing habitat for elk, 
while Long et al. (2014) suggested the 
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relative importance of forage and thermal 
conditions are context-dependent.

Among ungulates, the cold-adapted 
moose (Alces alces) has received particular 
attention with regards to impacts of tempera-
ture on physiology, habitat selection, and fit-
ness. Heat can increase metabolic costs for 
moose at lower temperature thresholds than 
observed for other sympatric ungulates 
(Renecker and Hudson 1986). Although pop-
ulation performance has been negatively cor-
related with temperature (Lenarz et al. 2009; 
but see Mech and Fieberg 2014), no empiri-
cal data exist to link population performance 
to ambient temperature, unlike indirect 
impacts related to habitat change (Monteith 
et al. 2015, Holmes et al. 2021) and parasit-
ism (Pekins 2020). In addition to intrinsic 
adaptations to thermal stress (Thompson et 
al. 2019, 2020), moose commonly employ 
thermoregulatory behavior through micro- 
and macro-habitat use at high summer tem-
peratures (Schwab and Pitt 1991, Dussault et 
al. 2004, Broders et al. 2012, van Beest et al. 
2012, van Beest & Milner 2013, Melin et al. 
2014, Street et al. 2015, McCann et al. 2013, 
Ditmer et al. 2018, Alston et al. 2020, 
Borowik et al. 2020) and during winter 
(Burkholder et al. 2022). A notable exception 
was found in Ontario, where the general lack 
of moose behavioral response to temperature 
was attributed to low underlying variability 
in temperature across the study area (Lowe et 
al. 2010). 

The importance of thermal conditions in 
driving wildlife behavior in any local system 
likely depends upon the heterogeneity of 
micro-climates (Long et al. 2014, Londe 
et al. 2020). Spatial variation in the thermal 
environment is often ignored in wildlife man-
agement (Elmore et al. 2017). However, the 
spatial and temporal variation of thermal con-
ditions can be complex functions of broad-
scale climate context and fine-scale 
heterogeneity in vegetation type and 

structure, topography, hydrology, season, and 
time of day (Lookingbill and Urban 2003, 
McGraw et al. 2012, Olson et al. 2014, Londe 
et al. 2020). Elmore et al. (2017) suggested 
that heterogeneity in thermal conditions be 
assessed prior to conducting studies of the 
relative importance of thermal conditions on 
wildlife behavior and demography. For cold-
adapted species such as moose, predicting 
spatial and temporal variation in temperature 
across habitats may be particularly important 
at the species’ range periphery. Relatively 
cool locations may serve as a crucial compo-
nent of habitat in such settings where high 
temperatures may impose metabolic costs if 
unmitigated (McCann et al. 2013, Ditmer 
et  al. 2018). Under these circumstances the 
influence of land management decisions on 
thermal refugia may become a relevant con-
cern, along with forage and security cover, in 
managing habitat for moose or other species 
(Elmore et al. 2017).

We measured spatiotemporal variation in 
ambient temperatures during both winter and 
summer within three study areas of western 
Montana (USA) in support of concurrent 
studies of moose ecology and population 
dynamics. Our objectives were to assess the 
thermal conditions available to wildlife in 
these areas, to understand the effects of envi-
ronmental covariates on temperature across 
time and space, and to predict thermal land-
scapes as a function of those covariates. 

METHODS
Study Areas
We investigated factors affecting local tem-
peratures in 3 three areas of western Montana, 
USA where long-term studies of moose ecol-
ogy and demography were ongoing (Newby 
and DeCesare 2020). The Cabinet Mountains 
study area (48.2°N, 115.5°W) was character-
ized by dense forest of diverse conifer 
species, ranging in elevation from 660 to 
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2,494 m with mean January temperatures of 
−8.1 to −0.8°C, mean July temperatures of 
7.7 to 25.0°C, and mean annual precipitation 
of 91.4 cm. The Big Hole study area (45.4°N, 
113.5°W) was a higher elevation valley 
including willow- (Salix spp.) riparian habi-
tat surrounded by forested mountains, rang-
ing in elevation from 1,842 to 3,232 m with 
mean January temperatures of −12.0 to 
−2.2°C, mean July temperatures of 5.4 to 
22.9°C, and mean annual precipitation of 
63.8 cm. The Rocky Mountain Front study 
area (47.9°N, 112.7°W) included areas of 
riparian and fen habitat and rugged moun-
tainous forests, ranging in elevation from 
1,200 to 2,803 m with mean January tem-
peratures of −10.2 to −0.9°C, mean July tem-
peratures of 7.1 to 22.6°C, and mean annual 
precipitation of 71.4 cm.

Field Methods
To quantify relationships between biophysi-
cal variables and local air temperatures, 
we  used temperature sensors (iButton 
Model  DS1921G-F5; Maxim Integrated, 
San Jose, California) to measure ambient 
temperature at selected, non-random loca-
tions within each of the 3 study areas. 
Sensors (n = 96; 32 per study area) were 
deployed a minimum of 1 km apart during 
one winter and one summer session lasting 
85 days each, as dictated by memory limita-
tion of the sensors. We programmed sensors 
to take temperature readings during the same 
hourly schedule within each study area and 
season. Season dates were not identical 
across study areas as certain sensors initiated 
or ended a few days apart. Overall, winter 
sampling occurred during 18 November 
2013–16 February 2014 in the Cabinet 
Mountains, 14 December 2013–9 March 
2014 in the Big Hole, and 19 November 
2014–13 February 2015 in the Rocky 
Mountain Front. Summer sampling occurred 
during 9 July–3 October, 2014 in the Cabinet 

Mountains, 3 July–27 September, 2014 in 
the Big Hole, and 17 July–11 October, 2014 
in the Rocky Mountain Front (Fig. 1). We 
anchored sensors at a height of 2 m above 
ground to the stems of trees or shrubs where 
available, or to existing wooden fence struc-
tures in open areas (Lundquist and Huggett 
2008), and shielded sensors from solar radi-
ation using custom radiation shields follow-
ing Holden et al. (2013). 

We subjectively selected sampling sites 
to include shrubland and forested vegetation 
cover types (MNHP 2017) across a gradient 
in elevation that aligned with areas used by 
radio-collared moose in a related study 
(Newby and DeCesare 2020; 858–1,444 m 
in the Cabinet Mountains, 1,847–2,263 m in 
the Big Hole, and 1,330–1,764 m in the 
Rocky Mountain Front). Temperature was 
recorded at hourly intervals (i.e., 0:00, 1:00, 
2:00, …) throughout the 24-hr diel cycle. To 
represent ambient conditions generally in 
each study area, we developed reference val-
ues from data collected at Remote Automatic 
Weather Stations (RAWS) administered by 
the National Interagency Fire Center. 

Range in Temperature as Metric of 
Potential Thermal Refuge
We first used descriptive comparisons of 
temperature data across sites within each 
study area and season to evaluate the degree 
of spatiotemporal variation. Because tem-
perature sensors were collecting concurrent 
temperature measurements during the same 
day and hour within each area, we used the 
range (maximum – minimum) in tempera-
tures at each sensor during each day-hour as 
a metric of potential for thermal refuge 
among environmental conditions at a given 
time. We used scatter density plots to visual-
ize the variation in temperature ranges within 
each season and estimated the average range 
per hour for each site and season. This estab-
lished the degree of variation which we then 
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sought to explain with environmental covari-
ates and generalized linear models.

Environmental Covariates
To quantify site characteristics affecting 
temperature, we first estimated metrics of 
topography using a digital elevation model 
from the USGS 3D Elevation Program 
(USGS 2019). From the DEM we estimated 
elevation, aspect, and a topographic position 
index (TPI). TPI generally discriminated the 
gradient of landforms from drainages (nega-
tive values) to ridges (positive values) and 
was estimated as the difference in elevation 
between any given pixel and the average ele-
vation of the surrounding neighborhood, 
1-km in radius (Weiss 2001). We used a 
trigonometric transformation of aspect 
(cos[aspect-45]; McCune and Keon 2002) 
that indexed heat load received according to 
variation in slope aspect. This transforma-
tion of aspect ranged from −1 to 1 along a 
southwest to northwest gradient.

We also quantified vegetation conditions 
at each site according to available raster lay-
ers for land cover type (MNHP 2017) and 
percent forest canopy cover (Homer et al. 
2015). Lastly, we accounted for the effect of 
variable solar radiation during daytime using 
measurements of solar radiation (W · m-2) 
recorded at RAWS stations. In final stages of 
model-building we tested 2 interactions 
between solar radiation (recorded at a single 
RAWS site in each study area) and both land 
cover and aspect to assess whether the effects 
of these variables depended upon the rela-
tive solar radiation across days. 

Statistical Analyses
We quantified spatiotemporal variation in 
temperature as the site- and hour-specific 
difference between ambient temperatures 
recorded by each iButton sensor and the 
temperature recorded simultaneously at 
RAWS stations located within each study 
area (Cabinet Mountains FIRM8; Big Hole 

Fig. 1. Locations of study areas, temperature sensors, and Remote Automatic Weather Station (RAWS) 
sites for monitoring ambient temperature, western Montana, 2013–2015. 
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SLCM8, Rocky Mountain Front GSNM8; 
Fig. 1). We built models that predicted Δt 
(defined as tsite – tRAWS) based on environ-
mental covariates measured at each site. 
Treating Δt as the response variable in our 
models instead of tsite itself did not affect 
covariate patterns (because tRAWS was a con-
stant across all sites for a given day-hour), 
but served to link our models to widely 
available RAWS data and ensure that we 
could make predictions both in- and out-of-
sample for any given location and date-time 
using GIS-measured variables and available 
RAWS data. Modeling variation in Δt also 
focused our analyses specifically on spatial 
variation in temperature by adjusting all data 
relative to the temporally varying measure 
of temperature at the RAWS sites. This 
effectively removed temporal (i.e., daily) 
variation in temperature data and left us to 
model spatial differences alone. We modeled 
effects on Δt separately by 8 separate hours 
of the day (0, 3, 6, 9, 12, 15, 18, 21) to better 
illuminate the dynamics of how site factors 
varied in their effects on local temperatures 
during the daily cycle. 

Preliminary examination of data indi-
cated that Δt readings recorded at the same 
time-of-day on successive days were highly 
autocorrelated. To minimize the effects of 
such serial correlation on estimates of devi-
ance, we modeled all relationships using the 
function lme within the R package nlme 
(Pinheiro et al. 2022), treating sample site as 
a random variable and with autocorrelation 
structure modeled using corARMA within 
sample sites. We used maximum likelihood 
(rather than restricted maximum likelihood) 
throughout, as this has been recommended 
for model selection in cases where the ran-
dom factors remain the same in all models 
within the suite but various combinations of 
putative explanatory variables are examined 
(Zuur et al. 2009). 

For each combination of study area (i.e., 
region), season (summer vs. winter), and 
hour of the day, we began by evaluating uni-
variate patterns of each environmental vari-
able and Δt. We first centered and 
standardized all continuous covariates 
(Schielzeth 2010) and then fit univariate 
models for canopy, land cover type, eleva-
tion, aspect, and TPI to explore patterns in 
the data. We then fit global main effects 
models including all 5 of these same envi-
ronmental covariates as hypothesized driv-
ers of Δt for each study area, season, and 
hour. We were less concerned about poten-
tially problematic effects of multicollinear-
ity among covariates for two reasons. First, 
correlations among these covariates were all 
<0.6, and second, the underlying goals for 
these models were more rooted in predic-
tions than parsimony; thus, we fit global 
models to all subsets of data rather than per-
forming model selection for each study area, 
season, and hour. Lastly, in addition to the 5 
main effects covariates, we also included the 
interaction of solar radiation and land cover 
type in all daytime models. We conducted 
preliminary assessment of this interaction 
using AIC to compare main effects models 
with those including the interaction, and 
models were improved in the majority of 
cases (78%, 90%, and 60% of data subsets 
by season and hour in the Big Hole, Cabinet 
Mountains, and Rocky Mountain Front 
study areas, respectively). 

We evaluated the conditional R2 value 
from each model to assess the relative amount 
of variation explained (Nakagawa and 
Schielzeth 2013) and used standardized coef-
ficients to assess the relative importance of 
each covariate (Galipaud et al. 2017). Lastly, 
to understand the relative importance of each 
covariate across all times of day, we averaged 
the absolute values of standardized coeffi-
cients for each covariate across hour-specific 
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models per study area and season to compare 
relative variable importance.  

RESULTS
Ambient Temperature Data
We deployed sensors in 96 different locations, 
equally distributed across the 3 study areas 
and retrieved data from all 96 sensors during 
summer and 93 sensors during winter 
(Table  1). Restricting our interpretations to 
temperatures gathered at the 8 focal hours of 
the day analyzed here, these yielded 124,653 
temperature readings for comparison with 
temperatures at their respective RAWS sites 
(Table 1). Elevations of sensors were lowest 
in the Cabinet Mountains study area and 
highest in the Big Hole study area. A higher 
proportion of sensors were located in forested 
cover types in the Cabinet Mountains than at 
the other two study areas; forest canopy was 
higher in the Cabinet Mountains (Table 1). 
Across all sensors and times-of-day, tempera-
tures recorded by field sensors were, on aver-
age, 0.95–2.35°C colder than that at RAWS 
stations in the Cabinet Mountains and Big 
Hole study areas across both seasons, but 
more similar to that at the RAWS station on 
the Rocky Mountain Front (Table 1). 

There was substantial potential for ther-
mal refuge according to the temperature 
ranges observed among sites per study area, 
season, and hour (Fig. 2). On average, sites 
varied by 7.0°C during summer (Big Hole 
6.1°C, Cabinet Mountains 7.6°C, Rocky 
Mountain Front 7.3°C) and by 6.1°C during 
winter (Big Hole 6.1°C, Cabinet Mountains 
5.0°C, Rocky Mountain Front 7.4°C; Fig. 2). 
However, we observed considerable hetero-
geneity in the magnitude of temperature 
variation among sites on a given day and 
hour (Fig. 2), ranging from 0°C (e.g., identi-
cal temperatures across all sites in a given 
area) to maximum temperature ranges of 19, 
20.5, and 22.5°C observed among sites at a 
single time in each study area, respectively. 

Environmental Drivers of Thermal 
Refuge
Considered in isolation (i.e., via univariate 
coefficients), predictor variables not only var-
ied in a cyclic fashion during the 24-hour diel 
cycle, but in many cases, exhibited reversed 
effects between day and night (Fig. 3). Such 
patterns were most pronounced during sum-
mer in the Cabinet Mountains, where condi-
tions such as high canopy cover, forest land 

Table 1. Summary of ambient temperature data, site attribute data for mean elevation, mean percent canopy 
closure, mean transformed aspect (TA), proportionate forest land cover, and the mean difference between 
temperatures measured at each site and Remote Automatic Weather Station (RAWS) sites in close 
proximity to each study area (Δt), from 3 study areas in western Montana during summer and winter 
seasons, 2013–2015. 

Study area Season Sensors 
(n)

Temperature 
readings  

(n)

Mean (SD) 
elevation,  

m

Mean 
(SD) 

percent 
canopy

Mean (SD)  
TA

Proportion 
forested

Mean  
(SD) Δt

Cabinet 
Mountains

Summer 32 21,142 1,135 (164) 71 (37) −0.04 (0.68) 0.91 −2.14 (3.83)
Winter 32 21,048 −0.95 (2.79)

Big Hole Summer 32 20,459 2,061 (121) 36 (27) 0.09 (0.56) 0.59 −2.35 (2.35)
Winter 31 19,713 −1.23 (2.54)

Rocky 
Mountain 
Front

Summer 32 21,856 1,518 (122) 32 (26) 0.10 (0.72) 0.69 0.08 (2.88)
Winter 30 20,435 −0.43 (3.15)
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cover type, high elevation, northerly aspects, 
and convex topographic positions (i.e., ridges) 
tended to yield cooler temperatures during the 
day, but warmer temperatures at night (Fig. 
3). Univariate results also showed stronger 
ability to explain spatiotemporal variation in 
temperature with our covariates during sum-
mer than winter across all study areas (Fig. 3). 

When pooling covariates into multivari-
able models, all six variables (5 main effect 
terms and an interaction between land cover 
and solar radiation) made relatively similar 

contributions to model performance. We 
used average absolute values of standardized 
coefficients to evaluate relative importance 
of covariates and found forest land cover and 
elevation to be among the most consistently 
high, though canopy, aspect, and TPI were 
also comparable in some seasons and study 
areas (Fig. 4). Conditional R2 values showed 
considerably higher ability to explain varia-
tion in the data with models for summer tem-
perature (average R2 = 0.51, 0.55, 0.56 
among study areas) compared to those 

Fig. 2. Scatter density plot and average (dashed line) of the maximum range in ambient temperature 
measured concurrently across days at hourly intervals among sensors within 3 study area 2 seasons, 
western Montana, 2013–2015.
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Fig. 3. Univariate coefficients and standard errors for the effects of spatial covariates and season on 
ambient temperature variation by time of day in the Big Hole, Cabinet Mountains, and Rocky 
Mountain Front study areas of western Montana, 2013–2015.
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estimated for winter (average R2 = 0.09, 
0.23, 0.14 among study areas). Lastly, global 
models facilitated the spatial prediction of 
ambient temperature across each study area, 
which also revealed differences in thermal 
environments between seasons and times 
(Fig. 5, Tables 2 and 3).

DISCUSSION
In contrast to McGraw et al. (2012) who 
found no differences > 2°C in radiant tem-
perature using black globe sensors in 
Minnesota (minimal elevation range), we 
found average differences in ambient air 
temperatures of 6–7°C at all 3 study areas 
during both seasons. Under the most extreme 
conditions, differences between locations 
potentially available to moose approached 
20°C, depending on study area, season, and 
time-of-day. Surprisingly, spatial heteroge-
neity in temperatures was somewhat consis-
tent across both time of day and baseline 
temperature (N. DeCesare, unpublished 
data). The refuge effect of relatively cool 
sites appears consistently available; how-
ever, animal responses to temperatures, and 
their dependence on thermal refugia, may be 
accentuated during particularly extreme 
conditions (Pigeon et al. 2016, Robertson 
et al. 2022). Furthermore, drivers of spatial 
pattern in these differences were not static, 

and covariates associated with cool condi-
tions varied widely by study area, season, 
and time of day (Fig. 3). Moose selection of 
sites as thermal refugia may therefore be 
conditioned temporally and spatially accord-
ing to shifting patterns of heterogeneity that 
dictate where and when cooler conditions 
are available. 

Combinations of biophysical variables 
generating cooler microclimates typically 
reversed between early-morning and late-af-
ternoon time periods. Similar to studies else-
where, we found that both forested vegetation 
types and increased canopy closure within 
forested vegetation provided cooling (rela-
tive to grass-shrub types) during midday but 
retained warmth at night (Olson et al. 2014, 
Li et al. 2015). Elevation-temperature rela-
tionships were more complex, with decreases 
in temperature at high elevation in some 
study areas and seasons, but inversion pat-
terns of cooler temperature at low elevation 
in some situations (e.g., summer nighttime 
temperatures in Cabinet Mountains). Such 
summer inversion patterns have been 
observed previously in mountain study 
areas, where radiatively cooled air can accu-
mulate in drainage bottoms during night 
(Holden et al. 2011). Diurnal cycles of 
moose movement and habitat use consistent 
with some of these time-varying patterns of 

Fig. 4. Average importance of 6 variables (canopy, forest land cover, elevation aspect, topographic 
position index [TPI], interaction of forest land cover forest and solar radiation), in explaining spatial 
variation in ambient temperature in 3 study areas and 2 seasons, western Montana, 2013–2015.
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temperature have been noted by Dussault 
et  al. (2004), Borowik et al. (2020), and 
Burkholder et al. (2022). Where moose have 
been shown to increase nighttime activity in 
response to warm ambient temperatures 
(Montgomery et al. 2019), spatial variation 

in temperature conditions may induce behav-
ioral effects during both daytime and 
nighttime.

While spatial heterogeneity in tempera-
ture during summer was only slightly higher 
compared to that during winter (Fig. 2), our 

Fig. 5. Predicted ambient temperature from global generalized linear models in an example portion of 
the Cabinet Mountains study area during two times and seasons and relative to the average recorded 
temperature at Remote Automatic Weather Station (RAWS) sites during the study period, 
2013–2015.
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ability to explain such pattern was much bet-
ter during summer (average R2 = 0.51–0.56) 
than winter (average R2 = 0.09–0.23). To the 
contrary, another study directed at predicting 
monthly maximum and minimum tempera-
tures over space using covariates similar to 
ours found equivalent model fit during sum-
mer and winter (Estevo et al. 2022). There 
are likely other unmeasured drivers of spatial 
variation in temperature during winter for 
which we were not able to account. Studies 
of moose behavioral responses to heat have 
emphasized summer conditions (e.g., Melin 
et al. 2014), though relatively warm tempera-
tures can also induce physiological costs 
during winter (Renecker and Hudson 1986). 
We don’t fully understand animals’ ability to 
anticipate or detect heterogeneity in the ther-
mal environment, but it’s possible that such 
ability may also vary between seasons.

Measures of ambient temperature are 
not equivalent to the operative or effective 
temperature (Bakken 1981) that better 
describes the thermal conditions experi-
enced by an animal by accounting for the 
additional and potentially more impactful 
effects of solar radiation and wind (Mitchell 
et al. 2018). Heterogeneity in operative tem-
perature in our study areas may be higher 
than ambient temperature alone (Dzialowski 
2005, Elmore et al. 2017). Furthermore, we 
did not sample additional variation in real-
ized temperatures in accordance with the 
ground, water, or snowpack which may mit-
igate thermal conditions for wildlife 
(McCann et al. 2013, Thompson et al. 2021). 

We used a relatively modest sample size 
of temperature sensors and were able to find 
a variety of complex relationships between 
temperature and topographic and vegetation 
conditions. While spatiotemporal tempera-
ture data are already available at coarse 
scales from various remote-sensing or inter-
polated data sets, multiple studies have 
shown that models using locally-derived 

empirical temperatures outperform general 
models (Macek et al. 2019, Estevo et al. 
2022). We encourage researchers and man-
agers to explore field collection and spatio-
temporal modeling of temperature sensor 
data for cost-effect and baseline description 
and prediction of thermal environments for 
wildlife (Fig. 5). The physiological effects of 
thermal environments are multi-faceted and 
complex, and improving our understanding 
and management of thermal environments is 
an important challenge for future conserva-
tion (Mitchell et al. 2018). 
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