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ABSTRACT: Assessments of ungulate populations need to be expressed in probabilistic terms to
convey uncertainty about key parameters and the consequences or “risks” of alternative policies
for harvest. The use of Bayesian estimation and risk assessment is described and applied to a
declining moose (Alces alces) population in north-eastern British Columbia. A simple balance
model was used to calculate posterior distributions of probability for population size of adults at
the start of the assessment period and recruitment rate of calves. Model inputs included two mid-
winter surveys of absolute abundance, a herd-composition survey and a harvest/effort index for
adult bull moose. Calfrecruitment was positively density dependent at moderate to high densities
of moose. Probability distributions were estimated for moose population size in 1988 (95% CI’s:
7,655 - 10,550) and 1995 (95% CI’s: 3,805 - 5,980). Risk functions were used to determine the
probability of obtaining various adult sex ratios after 3 years of additional bull harvest. Some of
the limitations of the moose assessment were that not all of the model parameters were treated as
uncertain, that deterministic assumptions about population dynamics were used, and that the
behaviour of this predator-ungulate system at low densities of moose was poorly understood. This
can bias the degree of certainty in estimates of parameters and risk associated with various harvest
policies.
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Wildlife managers routinely use popula-  the Atlantic cod (Gadus morhua) off New-
tion models to assessthe dynamicsofhunted  foundland and Labrador, are testimony to
populations, and to evaluate the conse- the danger of not explicitly incorporating
quences or “risks” of harvest policies (Pojar  uncertainty and risk into population assess-
1981). A key limitation of mostmodels for ments (Hilborn ez al. 1992, Hutchings and
ungulates, however, is that they neither Myers 1994).
explicitly incorporate uncertainty into the Bayesian estimation has been recog-
population assessments, nor do they quan-  nized as an appropriate statistical method
tify the risks associated with different har-  for producing probability distributions for
vest policies. If the parameter estimates  population parameters, including population
are uncertain, then prescriptions for harvest abundance (Hilborn and Walters 1992). By
to achieve desired management objectives  incorporating probability distributions, rather
may either be too conservative or overly thanpointestimates of parameters, the prob-
optimistic. If they are too conservative, ability of achieving various harvest man-
additional opportunities for harvestingwill  agementobjectives can be quantified. While
not be realized, whereas if they are overly = Bayesian approaches have received con-
optimistic, harvests will not be sustainable.  siderable attention in fisheries and marine
Several recent failures in renewable re- mammal management (e.g. Hoenig et al.
source management, such asthecollapseof 1994, McAllister et al. 1994, Walters and
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Ludwig 1994, Raftery et al. 1995), they
havereceived only limited attention in man-
aging ungulate harvests (Pascual and Hilborn
1995). In this paper, I provide a case study
for using Bayesian estimation to assess the
uncertainty of several parameters for a
moose population in north-eastern British
Columbia, based on relatively simple proce-
dures that can be implemented on a
Microsoft Excel® spreadsheet (Walters and
Ludwig 1994). 1 also develop risk functions
which incorporate the uncertainty of key
parameters to assess the impact of future
bull harvest levels on mid-winter bull/cow
ratios.

STUDY AREA

I studied a declining moose population
located within Wildlife Management Unit
(WMU) 7-42 of north-eastern British Co-
lumbia (ranging from 57°14°N, 122°42°W
to 57°45°N, 124°47°W). This 6,057-km?
area comprised the southern portion of the
Muskwa project area (17,900 km?) and has
been the site of ongoing studies on wolf-
ungulate interactions (Elliott 1989). Al-
though many of the moose wintering within
WMU 7-42 are migratory, most of their
annual movements occur within the WMU,
hence population closure was assumed.

Objectives for harvest management in-
clude maintaining the adult sex ratio at >30
bulls/100 cows post-season (J. P. Elliott,
B.C. Environment, Fort St. John, pers.
comm.). Tomeet the objective for this adult
sex ratio, hunter harvests have been re-
stricted to bull moose during an autumn
hunting season (Aug. 15 to Sept. 30 and
Oct. 16 to 31). In 1994, the “any bull”
season in WMU 7-42 was replaced with a
“spike-fork” (moose with a spike or fork
antler) and “tripalm” (moose with 3 or more
tines on at least one brow palm) regulation
in an attempt to further reduce the bull
harvest, and improve the bull/cow ratio.
Regulations prohibited the harvest of
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antlerless moose.

Predation by wolves (Canis lupus)
appears to be the primary factor regulating
this moose population, although grizzly bears
(Ursus arctos) and black bears (U.
americanus) also may be important preda-
tors (Elliott 1989). Predation on moose is
thought to be characterized by a density-
dependent (regulatory) phase at low moose
densities and an inverse, density-dependent
(nonregulatory) phase at moderate to high
moose densities (the predation model of
Messier 1994:479). Other ungulate prey
that inhabit this area included caribou
(Rangifer tarandus), mountain sheep (Ovis
dalli stonei), mountain goat (Oreamnos
americanus), bison (Bison bison), elk
(Cervus elaphus), and deer (Odocoileus
hemionus and O. virginianus).

The biogeoclimatic zones of the area
were described by Krajina (1965) and the
physiography by Holland (1976). The cli-
mate is typical of the subarctic with long,
cold winters and a short growing season.
The 4,104 km? survey area for moose occu-
pied the lower two-thirds of WMU 7-42,
and spanned the Muskwa Ranges of the
northern Rocky Mountains, the Muskwa
Foothills and the adjacent lowlands of the
Alberta Plateau.

METHODS

Hunter Harvest

Harvest statistics, including total har-
vest, sex-age composition, and kill per unit
effort (KPUE), have been estimated annu-
ally since 1976. These variables were
derived from a harvest questionnaire mailed
to a random sample of hunters, with a
follow-up second questionnaire sentto non-
respondents. KPUE was calculated as the
number of adult bulls killed by resident
hunters/100 hunter days. 1 assumed that
KPUE was a nonlinear function of bull
moose abundance (Fryxell ezal. 1988), and
could be described by a power function
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(Cooke and Beddington 1985):
KPUE, = ¢ B Y,

where KPUE, is the annual bull kill per unit
effortin year¢, B, is the pre-season estimate
of adult bulls, g, is a scaling parameter and
q, is the power parameter. Note that only
when ¢, = 1 is KPUE a linear index of
absolute abundance.

Moose Population Surveys

Surveys of Absolute Abundance. -
Surveys of absolute abundance were con-
ducted during February-March in 1989 and
1993 based on stratified random sampling
designed for aerial moose surveys (Gasaway
etal. 1986). A sightability correction factor
(SCF) for undercounting bias was conserva-
tively assumed to be 1.05 (Boertje et al.
1996). This assumption was based on the
extensive use by moose of subalpine habi-
tats where visibility was excellent, the high
search effort (~2.3 min/km?) employed, and
use of helicopters (Bell 206) to count and
classify moose. The rate of population
change between the two surveys, and its
associated 95% confidence interval, was
calculated following the procedure of
Gasaway ef al. (1986:66-70). The survey
estimates were extrapolated to all of WMU
7-42 by assuming a similar density and
composition of moose outside the survey
area.

Survey of Herd Composition. - An
aerial survey of herd composition was con-
ducted during February 1994 to classify
moose. Transects were uniformly spaced
straight lines through WMU 7-42, modified
where necessary for feasibility in rough
topography. This pattern was assumed to
be random relative to the animals and thus
produced unbiased ratios of bulls/100 cows
and calves/100 cows.

Bayesian Estimation of Key Parameters
Procedures for Bayesian estimation
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were used to calculate posterior probability
distributions for two key parameters
(Walters and Ludwig 1994). The first key
parameter was the number of adult moose
in mid-August 1988 (NV,,), or just before the
hunting season. The second parameter was
the intercept (R) of the recruitment slope
(R)) for calf recruitment (R, calves/adult),
which was assumed to change linearly with
the abundance of adult moose, i.e. R, =R +
R N,. N, was considered a key parameter
as 1988 was the start of the assessment
period, and the initial number of animals is
critical in balance models that fit population
parameters using an “observation error”
estimation procedure (Walters 1986:136,
Eberhardt 1987, Hatter and Janz 1994). R,
was also considered a key parameter since
it affected calf recruitment, an important
parameter in determining population growth
rate (Bergerud 1992).

Bayes’ Theorem was used to calculate
the probability distributions of the key pa-
rameters. The theorem defines the link
between the likelihood of the data given the
parameter values and the probability to place
on the parameters (Walters and Ludwig
1994):

The “probability of the parameter val-
ues (N, R)) given these data” is called the

Probability of N,R,

given the data
Probability of the x (| Prior probability
data given Ng,R) of Ng.,R,

Total probability of the data

Bayes posterior probability for those val-
ues. Here, data refers to other information
used in the population assessment including
harvest data, survey data and known popu-
lation parameters. The “probability of these
data given the parameter values” is called
the likelihood function. The “total probabil-
ity of the data” is the sum of the numerator
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over all parameter values. The “prior prob-
ability of the parameter values” represents
a non-scientific (i.e., based on judgement
and past experience rather than the data)
degree of credibility assigned to the param-
eter values.

Bayesian estimation of the key param-
eters involved four steps: (1) choice of a
prior probability distribution for NV, and R ;
(2) formulation of the likelihood functions
for KPUE and the moose survey param-
eters; (3) development of a moose popula-
tion model to calculate the likelihood func-
tion’s; and (4) calculation of the Bayes
probability distribution for each key param-
eter. Because the posterior probability does
notdepend on any constant multiplier terms
that may appear in the prior or the likelihood
function, the entire likelihood function was
not required for the third step. Walters and
Ludwig (1994) referred to the likelihood
multiplied by the prior and stripped of such
constants as the “posterior kernel.”

Selection of the Prior Probability
Distribution. - A uniform distribution for
the prior probability was used. This as-
sumed that that all parameter values should
be equally weighted. With a uniform prior,
specified over a “reasonable” range of pa-
rameter values, the Bayes posterior prob-
ability calculation reduces to the following
simple formula:

(Likelihood of the parameter values)

(

Bayes posterior
probability for
parameter values

Sum of the likelihoods over all parameter values
admitted

)

Formulation of the Likelihood Func-
tions. - The equation used to calculate the
likelihood credibility kernel for KPUE (L)

was:
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L1= FZ(Z,'Z')Z_! —(n-l)/2
n-1
N
where
zZ'= ZZt ,
n
and

7= In(KPUE )-q,In(B),

(Walters and Ludwig 1994:718-719). Here,
n is the number of years of KPUE. This
procedure allows for the estimation of g, as
a “nuisance parameter” without its direct
solution. The power parameter g, also was
treated as a nuisance parameter and was
estimated by nonlinear estimation with
Microsoft Excel® Solver, as the conditional
maximum likelihood value for each combi-
nation of N and R (C.J. Walters, Univ. of
BC, pers. comm.). Potential values for g,
ranged between 0.00 - 1.00. Thus, the
model considered cases where harvesting
was either random (g, = 1) or nonrandom
(g,<1).Innonrandom hunting, hunters would
be expected to concentrate their effort in
areas where moose were most abundant.
The equation used to calculate the like-
lihood credibility kernel for the survey-based
population estimates (L,) was:
‘ a
L=exp ‘_Z (Y-U)r |
T,

L

|
—

(Walters and Ludwig 1994:716), where Y is
the mid-winter estimate of moose of a given
sex and age class in the model (i=1 for adult
bulls, 2 for adultcows, and 3 for calves), and
U, and V, are the extrapolated population
mean and variance from the survey esti-
mate. The survey variance underestimated
the population variance because neither the
sightability of moose, nor the variance asso-
ciated with extrapolating U, to WMU 7-42
was incorporated. Because of this, a more
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reasonable estimate of the population vari-
ance was obtained by doubling the survey
coefficientofvariation (CV) (C.J. Walters,
pers. comm.), i.e.

V= @eCrUy

The multinomial distribution was used
to calculate the likelihood credibility kernel
for the 1994 herd composition survey (L,):

v, ]

-

(Hilborn and Walters 1992:220-221), where
Yis the mid-winter model estimate of moose,
and n, is the number of moose of a sex and
age class, counted during the survey. The
total likelihood required to calculate the
Bayes posterior probability distribution was
the product ofthe individual likelihood’s, i.e.
the likelihood for all survey and KPUE data
(L,,))=LLL.

Moose Population Model. - A simple
balance model was used to calculate the
likelihood kernel’s. The population was
partitioned into adult bulls (B), adult cows
(C), and calves (Ca). The model consisted
of the following interdependent equations,
starting with the pre-season population in
1988:

3
L=T]
=1

B, ,=[B-H(B))Sa+0.5Caj,
C,,,=CSa+0.5Cay)j,

Ca1+)=R0M+I-RIM+ !

where H(B), were the adult bull harvests,
Sa was the adult (>1-year-old) nonhunting
survival rate, and Sj was the survival rate of
calves from autumn to the following hunting
season. R was estimated as a nuisance
parameter, using the same procedure for
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g,- I assumed that 50% of the nonhunting
mortality occurred between the end of the
hunting season and mid-winter. If either the
number of bulls or cows were eliminated
during the population projection then calf
recruitment was zero. Sa was assumed to
be 0.85 for adult moose, which was the
value estimated for an adjacent moose popu-
lation displaying a similar rate of decline
(Hatter and Bergerud 1991). Sj was likely
less than Sa (Larsen et al. 1989) and was
assumed to be 0.80. An equal calf sex ratio
was also assumed (Boer 1992). Harvest
totals were revised upwards by 20% to
incorporate additional losses due to wound-
ing (Fryxell et al. 1988).

The model was used to reconstruct
population trends from 1988-89 to 1994-95.
I used the 1989 mid-winter survey, the
assumed winter mortality, and the 1988
harvestto back-calculate an initial adult sex
ratio for N,. Because the model was
parameterized for moderate to high moose
densities (>0.65 moose/km?), where the
calf recruitment rate declined when moose
density was lowered, only short term popu-
lation trajectories were projected within
this density range. I did not attempt to
model long term maximum sustained yields,
because the calf recruitment rate would be
expected to increase once moose density
was sufficiently low to reduce the wolf
predation rate (Messier 1994, 1996).

Calculation of the Joint and Mar-
ginal Bayes Probability Distributions. -
Following the recommendation of Walters
and Ludwig (1994), both N, and R were
represented at >40 discrete levels between
aminimum and maximum value on a param-
eter grid. Potential values for N, were
determined through trial and error, by iter-
ating over a range of values that produced
likelihood’s that were essentially zero for
the minimum and maximum values. I con-
sidered a limited range of negative values
for minimum R in the parameter grid be-



BAYESIAN MOOSE POPULATION ASSESSMENT - HATTER

cause a linear approximation of recruitment
rate with moose abundance, at moderate to
high densities, could have a negative inter-
cept (C. J. Walters, pers. comm.). The
resulting likelihood value for each combina-
tion of parameters was stored in a “joint
likelihood table”. After all the likelihood
values were calculated, the table was scaled
as each individual likelihood divided by the
sum of all likelihood’s to calculate the “joint
Bayes posterior probability table.” The
maximum likelihood or “maximum a poste-
riori” estimate for the key parameters was
the parameter combination that had the
highest posterior probability value. The
marginal posterior probability for each key
parameter was the probability of each dis-
crete level of one parameter summed over
all other levels admitted for the other pa-
rameter. For example, the marginal distri-
bution with respect to R was:

( )

= D (Probability of [N,,R,] given the data).
N

Probability of R,
given the data and N,

a8

The 95% confidence or “credibility” inter-
vals (CI’s) were calculated by excluding
values <2.5% and >97.5% of the cumula-
tive marginal probability distribution (Hilborn
and Walters 1992:224).

Estimating Probability Distributions
for Population Abundance. - The grid of
posterior probabilities for the key param-
eters was used to estimate the probability
distribution for the pre-season number of
moose in 1988 and 1995. This involved
setting up a grid of discrete population
ranges (“bins”) for each year and then
finding the total probability that the popula-
tion size was within each of these ranges
(Walters and Ludwig 1994:717-718). Thus,
for each point in the (V,,, R) grid, I com-
puted the model population size for 1988
and 1995. The posterior probability associ-
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ated with the key parameters was then
placed in the appropriate bin for each year.
After completing all combinations of (V,
R)), each bin was summed to estimate the
total probability that the population size oc-
curred within the range represented by the
bin.

Risk Function for Harvest Decision
Harvest management for moose limited
by predation in Alaska, Yukon and northern
B.C. has primarily been restricted to hunt-
ing bull moose, since “male-only” harvests
do not affect the population growth rate in
the mid- to long-term (Van Ballenberghe
and Dart 1982). However, a concern or
“risk” of “any bull” only harvests is that
excessive skewing of bull/cow ratios may
lead to impaired productivity (Crete et al.
1981, Crete 1987). A risk function was
used to determine the probability of obtain-
ing mid-winter buil/100 cow ratios ranging
from >10/100to >30/100, after 3 additional
years of harvest (cf. Walters and Punt
1994). To calculate the risk function, the
model was projected forward from 1995-96
to 1997-98 for each (N, R)) combination
on the parameter grid, and for each harvest
level. Harvest levels ranged from 0 to 300
moose, in increments of 25. The 1998 mid-
winter bull/cow ratio was stored in a “post-
season bull/cow risk performance table”.
Ifthe parameter combination failed to meet
the mid-winter bull/cow objective, then the
associated probability from the Bayes pos-
terior probability table was stored in a
“masked probability table.” Finally, the en-
tries in the masked probability table were
summed and subtracted from 1 to calculate
the probability that a given harvest level
achieved a desired adult bull/cow ratio.

RESULTS
Survey Estimates of Moose and Hunter
Harvest
Numbers of moose in the 4,104-km?
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survey area declined significantly (=2.58,
39df, P<0.05) from 5,538 + 1108 (95% CI)
in 1989t03,423 + 1301 moose in 1993, for
an annual finite rate of change (1) of 0.89
(95% CI’s: 0.80 - 0.98)(Table 1). During
this period, adultbulls declined from 1,138 +
414 t0 519 + 190, and adult cows declined
from 3,351 +747t02,377 +942. The adult
sex ratio dropped from 34 + 14 bulls/100
cows to 22 + 9 bulls/100 cows, and mid-
winter calf ratios dropped from 31 * 7
calves/100 cows to22 + 5 calves/100 cows.
In 1994, 15 calves/100 cows were observed.
The extrapolated survey estimates for WMU
7-42 (6,057 km?) were 6,808 and 4,208
moose in 1989 and 1993 respectively.
During the “any bull” hunting seasons,
moose harvests increased from 376 bulls in
198910489 in 1991 and then declinedto 370
in 1993 (Table 2). In 1994, the bull harvest
was reduced to 229 under the selective bull
harvest strategy. KPUE also declined dur-
ing the 1989 to 1993 period when harvest
regulations were constant (Table 2).

Estimates of Parameters
The maximum a posteriori estimates
for the marginal distributions of the key

Table 1. Moose mid-winter estimates (N) from
absolute abundance surveys for 1989 and
1993, and sample size (n) for herd composition
survey for 1994 in WMU 7-42, north-eastern
B.C.

1989 1993 1994
N o N O n
AdultBull 1138 154 519 164 41
Adult Cow 3351 10.7 2377 19.0 191
Calf 1049 161 527 250 28
Total 5538 9.6 3423 182 260
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Table 2. Annual hunter harvest including as-
sumed 20% wounding loss, and kill per unit
effort (KPUE) for adult bull moose in WMU 7-
42, northern British Columbia.

1988 1989 1990 1991 1992 1993 1994

Harvest 429 376 405 489 425 370 229
KPUE 7.00 655 634 574 529 5.16 n/a

parameters were Ny, = 7,250 (95% CI’s:
6,125 - 9,250) (Fig. 1) and R = 0.02 (95%
CI’s: -0.30 - 0.30) (Fig. 2). R, ranged from
-0.0001 to 0.00005, g, from 0.02 to 0.45,
and g, from 0.34 to 0.78. The maximum a
posterioriestimate for the joint probability
distribution was N, = 7,375 and R = -0.06.
For this parameter combination, the ex-
trapolated survey results were similar to the
model mid-winter estimates (1989: 7,713
moose, 35 bulls/100 cows and 30 calves/100
cows; 1993: 5,635 moose, 22 bulls/100 cows
and 20 calves/100 cows; 1994: 18 bulls/100
cows and 16 calves/100 cows). Probability
distributions for the pre-season number of
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Fig. 1. Marginal Bayes posterior probability dis-
tribution for the 1988 pre-season number of
adult moose (N,,) in WMU 7-42, based on
KPUE and population surveys.
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Fig. 2. Marginal Bayes posterior probability dis-
tribution for pre-season calf recruitment rate
(R,) in WMU 7-42, based on KPUE and popu-
lation surveys.

moose in 1988 (median = 8,980; 95% CI’s:
7,655 -10,550) and 1995 (median = 4,590,
95% CI’s: 3,805 - 5,980) showed almost no
overlap (Fig. 3).
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The KPUE parameters g, and g, were
highly correlated (» = -0.94), as were the
recruitment parameters R and R, (r=0.97).
The “parameter confounding” and truncated
distribution of R implied that these data
could be fit with a wide range of hypotheses
aboutpopulation size and recruitment. Drop-
ping information on KPUE had little effect
on the probability distribution for N, (6,625;
95% CI’s: 6,000 - 8,500). Conversely,
dropping the survey information and using
only KPUE data for the likelihood function
resulted in a relatively flat probability distri-
bution for this parameter. This indicated
that KPUE, without survey data, had little
capability for defining posterior probabili-
ties.

Risk Assessment

The population model was used to esti-
mate annual harvest levels for bulls that
would meet various adult sex ratio objec-
tives for mid-winter 1998 (Fig. 4). The risk
function indicated there was only a 53%
chance of obtaining >30 bulls/100 if har-
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Fig. 3. Bayes posterior probabilities for pre-season number of moose in WMU 7-42 for 1988 and 1995.
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vesting was terminated. If 100 bulls were
harvested annually, there was only a 12%
chance of obtaining this sex ratio, and < 1%
chance if 200 were harvested annually.
Thus, with continued harvesting, it was ap-
parent the adult sex ratio objective for this
population (>30 bulls/100 cows) would prob-
ably not be realized, at least over the short-
term.

DISCUSSION

The primary advantage of Bayesian
estimation over more traditional modeling
approaches is its ability to assess, in
probabilistic terms, uncertainties for popu-
lation parameters, and to incorporate this
uncertainty into risk functions when deter-
mining annual allowable harvests. None-
theless, Bayesian methods can be just as
misleading as more traditional modeling
approaches, if data used to calculate the
likelihood functions are biased. Likelihood
functions in this case study were calculated
from two mid-winter stratified random block
surveys, a herd composition survey, and a
time series of KPUE. Stratified random
block surveys corrected for sightability

1
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=07 >10/100
4 \
u06 >15/100
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E% >20/100
- \
m
<04 >25/00
a \
o
€03 >30/100
o

02

0.1

0
N3RS EBRELRE S

Fig. 4. Risk function for bull only harvest policy
in WMU 7-42 required to achieve various
post-season bull/cow ratios, under positive
density-dependent calf recruitment.
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should provide the most accurate estimates
of absolute abundance, bull/cow, and calf/
cow ratios (Gasaway ef al. 1986). Herd
composition surveys may provide additional
information on sex and age ratios. Van
Ballenberghe (1979) warned, however, that
surveys of moose composition may produce
biased sex and age ratios, particularly if an
appropriate survey design and adequate
search effort are not employed. KPUE
may provide a useful index of population
trend if a nonlinear relationship between
KPUE and density is accounted for, as
might result from interference among com-
peting moose hunters (Fryxell ez al. 1988).
Ideally, surveys of absolute abundance or
the number of moose seen per hour flown
during annual surveys (e.g. Ballard et al.
1991), rather than KPUE, should be used to
monitor population trends.

The model structure employed in
Bayesian estimation is equally important as
the data used. I assumed calf recruitment
changed linearly with adult moose popula-
tion density. However, one reviewer sug-
gested that a more realistic model structure
might be to relate calf recruitment to the
density of females (sensu McCullough
1979). The model estimated the uncertainty
associated with two key population param-
eters (N, and R ), and treated R, ¢, and g,
as nuisance parameters. By incorporating
R, and g, directly into the assessment, the
posterior probability distribution for R was
substantially flattened over that obtained
when these parameters were not included.
Other parameters were assumed known.
The adult nonhunting rate of survival is one
of the most important factors affecting rate
of increase of ungulate populations (Fowler
and Smith 1973, Nelson and Peek 1982,
Eberhardt ez al. 1982). Similarly, calf sex
ratios are known to have a marked impact
onrate of increase (Van Ballenberghe 1983,
Boer 1992). Because both of these param-
eters were assumed known without error,
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the degree of certainty in the key param-
eters was probably overestimated, whereas
the risks associated with a given level of
harvest were underestimated. Thus, both
these parameters should be measured when
monitoring moose populations. Alterna-
tively, another reviewer suggested the un-
certainty of these parameters, as well as
other unknown parameters, could be esti-
mated using Gibbs sampling (Tanner 1993,
Gilks et al. 1996). Nonetheless, to be
effective, a more extensive data set than
used here would be required.

An advantage of using a simple model
structure, as opposed to a more complex

" age-structured model for moose within
WMU 7-42, was that it minimized the number
of parameters that must be estimated, or
assumed known. A disadvantage was that
this approach may have over-simplified the
population dynamics of moose in this area.
For example, the model neither directly
incorporated interactions between moose
and their habitat, nor did itallow for stochastic
variation in recruitment or temporal varia-
tion in age-specific survival of adults.
Walters and Ludwig (1994) suggested that
the best strategy for evaluating model struc-
ture is to test a sequence of increasingly
realistic models to see what each has to say
about the data. While misleading results
may be obtained from models that are too
simple, detailed models that emphasize re-
alism can also fail badly if they require
estimation of too many parameters (Walters
1986).

In this example, KPUE appeared to
contribute little information for defining prob-
ability distributions for moose population
size and the KPUE parameters were highly
correlated. The relationship between KPUE
and moose abundance was also poorly un-
derstood. Consequently, KPUE may not be
useful for Bayesian estimation and risk as-
sessments of moose populations.
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MANAGEMENT IMPLICATIONS

A common complaint by wildlife man-
agers is that hunters do not realize the
consequences of what they want
(McCullough 1984). The risk functions
provided a simple method for displaying the
consequences of various short-term bull
harvests on adult sex ratios, and could be
extended to display the trade-offs between
various other harvest policies and opportu-
nities to the public (e.g. the impact of bull-
only hunting versus harvesting both bulls
and cows on adult sex ratios and moose
population growth). Although the risk func-
tions cannot answer the important question
“what is an acceptable level of risk”, they
do provide an objective method for display-
ing uncertainty. Client groups, whose rec-
reation and livelihood depend on hunting,
would likely become better informed on the
consequences of various harvest options if
risk functions were used. It would also
enable these groups to provide more con-
structive input for formulating harvest deci-
sions, based on the level of risk they may be
willing to accept.
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